The Odds Algorithm Based on Sequential Updating and Its Performance
نویسندگان
چکیده
Let I1, I2, . . . , In be independent indicator functions on someprobability space ( ,A,P). We suppose that these indicators can be observed sequentially. Furthermore, let T be the set of stopping times on (Ik), k = 1, . . . , n, adapted to the increasing filtration (Fk), where Fk = σ(I1, . . . , Ik). The odds algorithm solves the problem of finding a stopping time τ ∈ T which maximises the probability of stopping on the last Ik = 1, if any. To apply the algorithm, we only need the odds for the events {Ik = 1}, that is, rk = pk/(1 − pk), where pk = E(Ik), k = 1, 2, . . . , n. The goal of this paper is to offer tractable solutions for the case where the pk are unknown and must be sequentially estimated. The motivation is that this case is important for many real-world applications of optimal stopping. We study several approaches to incorporate sequential information. Our main result is a new version of the odds algorithm based on online observation and sequential updating. Questions of speed and performance of the different approaches are studied in detail, and the conclusiveness of the comparisons allows us to propose always using this algorithm to tackle selection problems of this kind.
منابع مشابه
GENERALIZED FLEXIBILITY-BASED MODEL UPDATING APPROACH VIA DEMOCRATIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR STRUCTURAL DAMAGE PROGNOSIS
This paper presents a new model updating approach for structural damage localization and quantification. Based on the Modal Assurance Criterion (MAC), a new damage-sensitive cost function is introduced by employing the main diagonal and anti-diagonal members of the calculated Generalized Flexibility Matrix (GFM) for the monitored structure and its analytical model. Then, ...
متن کاملChaotic Genetic Algorithm based on Explicit Memory with a new Strategy for Updating and Retrieval of Memory in Dynamic Environments
Many of the problems considered in optimization and learning assume that solutions exist in a dynamic. Hence, algorithms are required that dynamically adapt with the problem’s conditions and search new conditions. Mostly, utilization of information from the past allows to quickly adapting changes after. This is the idea underlining the use of memory in this field, what involves key design issue...
متن کاملSEISMIC DESIGN OPTIMIZATION OF STEEL STRUCTURES BY A SEQUENTIAL ECBO ALGORITHM
The objective of the present paper is to propose a sequential enhanced colliding bodies optimization (SECBO) algorithm for implementation of seismic optimization of steel braced frames in the framework of performance-based design (PBD). In order to achieve this purpose, the ECBO is sequentially employed in a multi-stage scheme where in each stage an initial population is generated based on the ...
متن کاملStructural Damage Assessment Via Model Updating Using Augmented Grey Wolf Optimization Algorithm (AGWO)
Some civil engineering-based infrastructures are planned for the Structural Health Monitoring (SHM) system based on their importance. Identifiction and detecting damage automatically at the right time are one of the major objectives this system faces. One of the methods to meet this objective is model updating whit use of optimization algorithms in structures.This paper is aimed to evaluate the...
متن کاملFEM Updating of Ship Structure by The Sensitivity Equation of Transmissibility Function
This study presents a novel sensitivity-based finite element model updating approach to estimate structural parameters using output-only data. A quasi-exact sensitivity relation based on transmissibility data is introduced. Partially measured structural responses are included in mathematical formulations to address incomplete measurement problems and improve the accuracy of the sensitivity rela...
متن کامل